Data Science at Scale Specialization [16962]


Tackle Real Data Challenges

Master computational, statistical, and informational data science in three courses.

About This Specialization

Learn scalable data management, evaluate big data technologies, and design effective visualizations.

This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project.

Created by:


courses
4 courses

Follow the suggested order or choose your own.

projects
Projects

Designed to help you practice and apply the skills you learn.

certificates
Certificates

Highlight your new skills on your resume or LinkedIn.

Courses
Intermediate Specialization.
Some related experience required.
  1. COURSE 1

    Data Manipulation at Scale: Systems and Algorithms

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams
    Show or hide details about course Data Manipulation at Scale: Systems and Algorithms
  2. COURSE 2

    Practical Predictive Analytics: Models and Methods

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems. Learning Goals: After completing this course, you will be able to: 1. Design effective experiments and analyze the results 2. Use resampling methods to make clear and bulletproof statistical arguments without invoking esoteric notation 3. Explain and apply a core set of classification methods of increasing complexity (rules, trees, random forests), and associated optimization methods (gradient descent and variants) 4. Explain and apply a set of unsupervised learning concepts and methods 5. Describe the common idioms of large-scale graph analytics, including structural query, traversals and recursive queries, PageRank, and community detection
    Show or hide details about course Practical Predictive Analytics: Models and Methods
  3. COURSE 3

    Communicating Data Science Results

    Upcoming session: Mar 13 — Apr 10.
    Subtitles
    English

    About the Course

    Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way.
    Show or hide details about course Communicating Data Science Results
  4. COURSE 4

    Data Science at Scale - Capstone Project

    Upcoming session: May 8 — Jun 26.
    Commitment
    6 weeks of study, 3-4 hours/week
    Subtitles
    English

    About the Capstone Project

    In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.
    Show or hide details about course Data Science at Scale - Capstone Project

Creators

  • University of Washington

    The University of Washington is a national and international leader in the core fields that are driving data science: computer science, statistics, human-centered design, and applied math.

    Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

  • Bill Howe

    Bill Howe

    Director of Research

 

Enroll


Відкрито безкоштовний доступ для українців до навчальних програм Genius з 1 листопада до 4 грудня
10 наших найпопулярніших курсів із free
Безкоштовні курси для українців
Безкоштовні онлайн-сервіси вивчення мов для українців
Освітній онлайн-курс «Деривативи на ринках агропродовольчої продукції в Україні та світі» - USAID FST
Основи фінансів та інвестицій
Коронавірусна інфекція: факти проти паніки
Class Central’s Top 100 MOOCs of All Time (2019 edition)
100+ Free Online Courses to Learn about the UN’s Sustainable Development Goals
200 Best Free Coursera Courses in 2019


Все статьи раздела Образование

Market fluctuations
Economic uncertainty
Navigating risk

- Fin.Org.UA

Новини

20:40 - Долар зазнає найбільше тижневе падіння з липня
20:10 - Місто Славутич повністю знеструмлене внаслідок обстрілу московія
19:50 - московія наближається до повної блокади WhatsApp
19:20 - Постачання газу США встановили рекорд на тлі попиту Європи та Азії
19:00 - Оновлено Операційний план реалізації Державної стратегії управління лісами до 2035 року
18:45 - Уряд забезпечив стабільну роботу лісового господарства в умовах війни
18:45 - Уряд ухвалив низку рішень для розвитку лісової галузі
18:37 - Розпочинається обговорення проєкту щодо змін до технічних вимог до договорів про споживчий, фінансовий кредит
18:30 - За нормами ЄС: Уряд запускає пілотний проєкт для контролю походження експортованої деревини
18:30 - Київстар та Мінцифра запрошують долучитися до вибору назви для української LLM
18:15 - Уряд зареєстрував нові індустріальні парки
18:10 - Нацбанк показав курс долара і євро на понеділок 1 грудня
17:55 - Вимоги до внутрішнього аудиту в небанківських надавачах фінансових послуг буде оновлено
17:50 - Антимонопольний комітет закрив більшість старих справ
17:35 - Енергетики показали графіки відключення світла на суботу 29 листопада
17:30 - Уряд включив «ДІОНІС ЕНЕРГО ЕКО ПАРК» до реєстру індустріальних парків
17:30 - Як позбутися китайської дронової залежності
17:10 - "Забруднювач платить": в Україні запускають "пілот" з управління відходами
17:00 - Новий індустріальний парк «Екологічні ініціативи» включено до реєстру
17:00 - Жнива завершуються: скільки зерна матиме Україна
16:44 - Огляд торговельної політики Туніської Республіки
16:40 - У Києві відкрили важливий шляхопровід після ремонту
16:30 - Мінекономіки підписало меморандуми для запуску пілотного проєкту з удосконалення управління відходами за європейськими стандартами
16:25 - московіян "викинули" з ради Міжнародної морської організації
16:20 - Ворожий дрон впав на території підприємства у Чернігові
15:55 - Прозорість оборонних закупівель не гарантувала надійних постачальників – аудитори
15:40 - Керівники фінустанов назвали ризики бізнесу в Україні: на друге місце піднялася корупція
15:37 - Ключові рішення НКЦПФР від 28.11.2025
15:35 - Міноборони провалило розподіл закупівельних функцій між підрозділами та ДОТ – аудитори
15:32 - Чому сервіси для онлайн-бронювання ліків такі популярні


Більше новин

ВалютаКурс
Алжирський динар0.32405
Австралійський долар27.587
Така0.34531
Канадський долар30.1469
Юань Женьміньбі5.9736
Чеська крона2.0232
Данська крона6.5462
Гонконгівський долар5.4302
Форинт0.128203
Індійська рупія0.47257
Рупія0.0025347
Новий ізраїльський шекель12.9571
Єна0.27074
Теньге0.082332
Вона0.028765
Ліванський фунт0.000472
Малайзійський ринггіт10.226
Мексиканське песо2.3039
Молдовський лей2.4862
Новозеландський долар24.1318
Норвезька крона4.1602
Саудівський ріял11.2661
Сінгапурський долар32.5724
Донг0.0016032
Ренд2.4686
Шведська крона4.46
Швейцарський франк52.4718
Бат1.31314
Дирхам ОАЕ11.5078
Туніський динар14.3411
Єгипетський фунт0.8872
Фунт стерлінгів55.8651
Долар США42.266
Сербський динар0.41663
Азербайджанський манат24.8594
Румунський лей9.6044
Турецька ліра0.9945
СПЗ (спеціальні права запозичення)57.4376
Болгарський лев24.9947
Євро48.8933
Ларі15.6408
Злотий11.5342
Золото176541.28
Срібло2276.8
Платина69025.03
Паладій60134.37

Курси валют, встановлені НБУ на 01.12.2025