Data Science at Scale Specialization [13381]

Tackle Real Data Challenges

Master computational, statistical, and informational data science in three courses.

About This Specialization

Learn scalable data management, evaluate big data technologies, and design effective visualizations.

This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project.

Created by:

4 courses

Follow the suggested order or choose your own.


Designed to help you practice and apply the skills you learn.


Highlight your new skills on your resume or LinkedIn.

Intermediate Specialization.
Some related experience required.
  1. COURSE 1

    Data Manipulation at Scale: Systems and Algorithms

    Upcoming session: Mar 13 — Apr 17.
    4 weeks of study, 6-8 hours/week

    About the Course

    Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams
    Show or hide details about course Data Manipulation at Scale: Systems and Algorithms
  2. COURSE 2

    Practical Predictive Analytics: Models and Methods

    Upcoming session: Mar 13 — Apr 17.
    4 weeks of study, 6-8 hours/week

    About the Course

    Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems. Learning Goals: After completing this course, you will be able to: 1. Design effective experiments and analyze the results 2. Use resampling methods to make clear and bulletproof statistical arguments without invoking esoteric notation 3. Explain and apply a core set of classification methods of increasing complexity (rules, trees, random forests), and associated optimization methods (gradient descent and variants) 4. Explain and apply a set of unsupervised learning concepts and methods 5. Describe the common idioms of large-scale graph analytics, including structural query, traversals and recursive queries, PageRank, and community detection
    Show or hide details about course Practical Predictive Analytics: Models and Methods
  3. COURSE 3

    Communicating Data Science Results

    Upcoming session: Mar 13 — Apr 10.

    About the Course

    Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way.
    Show or hide details about course Communicating Data Science Results
  4. COURSE 4

    Data Science at Scale - Capstone Project

    Upcoming session: May 8 — Jun 26.
    6 weeks of study, 3-4 hours/week

    About the Capstone Project

    In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.
    Show or hide details about course Data Science at Scale - Capstone Project


  • University of Washington

    The University of Washington is a national and international leader in the core fields that are driving data science: computer science, statistics, human-centered design, and applied math.

    Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

  • Bill Howe

    Bill Howe

    Director of Research



Коронавірусна інфекція: факти проти паніки
Class Central’s Top 100 MOOCs of All Time (2019 edition)
100+ Free Online Courses to Learn about the UN’s Sustainable Development Goals
200 Best Free Coursera Courses in 2019
Пропозиції для молоді від UN
Trading Strategies in Emerging Markets Specialization
450 Free Online Programming & Computer Science Courses You Can Start in August
Підготовка та впровадження проектів розвитку громад
Рада Європи: Доступ до публічної інформації: від А до Я
New MicroMasters® Programs: Gain In-Demand Knowledge to Advance Your Career

Все статьи раздела Образование


15:18 - Віктор Ляшко: Якщо динаміка росту захворюваності буде розтягнута в часі, ми зможемо запобігти одночасному надходженню важкохворих у відділення інтенсивної терапії
13:36 - Когда пандемия закончится, мир будет другим
13:36 - НБУ признал, что за время карантина выросли цены на продовольственные товары и лекарства
12:42 - ДТЭК и “Укртелеком” Рината Ахметова оставили без фиксированной связи 5 районов Киева
12:42 - Евросоюз обсуждает новый “план Маршалла” после победы над коронавирусом
11:48 - Денис Шмыгаль взял себе советником по энергетике еще одного топ-менеджера Рината Ахметова
11:48 - Оператор газотранспортной системы Украины присоединился к Европейской сети
11:06 - За добу в Україну повернулося майже 11 тисяч українців
10:54 - Всемирный банк выделит Украине 135 млн долларов на медицину
10:54 - Коронавирус и война: станет ли эпидемия “голубем мира”
10:54 - НБУ рекомендовал банкам воздержаться от выплаты дивидендов до октября
10:00 - 5 тысяч правок ко второму чтению законопроекта о банках замедлят процесс его рассмотрения
09:06 - Мауро Лангобарди устроил на “ArcelorMittal Кривой Рог” типично итальянский бардак с выдачей пропусков тысячам заводчан
08:12 - Только на три часа и с вызовом адвоката
08:12 - Спрос на подержанные автомобили в Украине в первом квартале упал на 57%
08:12 - Сослуживец Сечина. Как Кремль нефть из Венесуэлы в Анголу перелил
22:30 - Український бізнес підтримує лікарів у боротьбі з пандемією
21:24 - Советские рецепты эффективны против коронавируса
16:12 - Роз’яснення щодо нових обмежувальних заходів на період карантину
16:12 - Віктор Ляшко: Всі мають зрозуміти необхідність більш жорстких обмежувальних заходів
16:12 - Телефони гарячих ліній з питань COVID-19 по регіонах
15:06 - Жена нового министра здравоохранения зарегистрировала медфирму в день назначения мужа на должность
15:06 - Брат Ермака за деньги вредил крупнейшему украинскому стивидору ТИС и украинской дочке мирового контейнерного гиганта MAERSK
15:06 - “Укроборонпром” не в состоянии предоставить полноценную документацию по аппаратам искусственной вентиляции легких
14:12 - Ринат Ахметов закрыл “Как вам не стыдно!” на своем канале
14:06 - Дмитро Кулеба: Попри пандемію динаміка відносин з Казахстаном збережеться
14:06 - 20 медиків систем МВС та МОЗ відлетіли допомагати італійським лікарям
13:18 - Владимир Зеленский отдыхал в Омане за счет жены, а улетел с помощью султана
13:18 - Снят запрет на продажу и аренду автомобилей во время карантина
12:24 - Украинская экономика упадет на 6%

Більше новин

Австралійський долар16.4142
Канадський долар19.3183
Юань Женьмiньбi3.8601
Чеська крона1.0724
Данська крона3.9576
Гонконгівський долар3.5303
Індійська рупія0.3602
Новий ізраїльський шекель7.5244
Мексиканське песо1.1083
Молдовський лей1.4854
Новозеландський долар16.0392
Норвезька крона2.624
Російський рубль0.35697
Саудівський рiял7.2731
Сінгапурський долар19.0607
Шведська крона2.6951
Швейцарський франк28.016
Єгипетський фунт1.738
Фунт стерлінгів33.6264
Долар США27.373
Бiлоруський рубль10.6052
Азербайджанський манат16.1626
Румунський лей6.1189
Турецька ліра4.0833
СПЗ (спеціальні права запозичення)37.1977
Болгарський лев15.1165
Алжирський динар0.22133
Вірменський драм0.054768
Іранський ріал0.00065783
Іракський динар0.023218
Ліванський фунт0.018328
Лівійський динар19.552
Малайзійський ринггіт6.4104
Марокканський дирхам2.7231
Філіппінське песо0.54486
Дирхам ОАЕ7.522
Туніський динар9.5874
Узбецький сум0.0028918
Новий тайванський долар0.91329
Туркменський новий манат7.894
Ганське седі4.7884
Сербський динар0.25744
Бразильський реал5.3225

Курси валют, встановлені НБУ на: 06.04.2020


Дані за 03.04.2020