Data Science at Scale Specialization [13171]


Tackle Real Data Challenges

Master computational, statistical, and informational data science in three courses.

About This Specialization

Learn scalable data management, evaluate big data technologies, and design effective visualizations.

This Specialization covers intermediate topics in data science. You will gain hands-on experience with scalable SQL and NoSQL data management solutions, data mining algorithms, and practical statistical and machine learning concepts. You will also learn to visualize data and communicate results, and you’ll explore legal and ethical issues that arise in working with big data. In the final Capstone Project, developed in partnership with the digital internship platform Coursolve, you’ll apply your new skills to a real-world data science project.

Created by:


courses
4 courses

Follow the suggested order or choose your own.

projects
Projects

Designed to help you practice and apply the skills you learn.

certificates
Certificates

Highlight your new skills on your resume or LinkedIn.

Courses
Intermediate Specialization.
Some related experience required.
  1. COURSE 1

    Data Manipulation at Scale: Systems and Algorithms

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Data analysis has replaced data acquisition as the bottleneck to evidence-based decision making --- we are drowning in it. Extracting knowledge from large, heterogeneous, and noisy datasets requires not only powerful computing resources, but the programming abstractions to use them effectively. The abstractions that emerged in the last decade blend ideas from parallel databases, distributed systems, and programming languages to create a new class of scalable data analytics platforms that form the foundation for data science at realistic scales. In this course, you will learn the landscape of relevant systems, the principles on which they rely, their tradeoffs, and how to evaluate their utility against your requirements. You will learn how practical systems were derived from the frontier of research in computer science and what systems are coming on the horizon. Cloud computing, SQL and NoSQL databases, MapReduce and the ecosystem it spawned, Spark and its contemporaries, and specialized systems for graphs and arrays will be covered. You will also learn the history and context of data science, the skills, challenges, and methodologies the term implies, and how to structure a data science project. At the end of this course, you will be able to: Learning Goals: 1. Describe common patterns, challenges, and approaches associated with data science projects, and what makes them different from projects in related fields. 2. Identify and use the programming models associated with scalable data manipulation, including relational algebra, mapreduce, and other data flow models. 3. Use database technology adapted for large-scale analytics, including the concepts driving parallel databases, parallel query processing, and in-database analytics 4. Evaluate key-value stores and NoSQL systems, describe their tradeoffs with comparable systems, the details of important examples in the space, and future trends. 5. “Think” in MapReduce to effectively write algorithms for systems including Hadoop and Spark. You will understand their limitations, design details, their relationship to databases, and their associated ecosystem of algorithms, extensions, and languages. write programs in Spark 6. Describe the landscape of specialized Big Data systems for graphs, arrays, and streams
    Show or hide details about course Data Manipulation at Scale: Systems and Algorithms
  2. COURSE 2

    Practical Predictive Analytics: Models and Methods

    Upcoming session: Mar 13 — Apr 17.
    Commitment
    4 weeks of study, 6-8 hours/week
    Subtitles
    English

    About the Course

    Statistical experiment design and analytics are at the heart of data science. In this course you will design statistical experiments and analyze the results using modern methods. You will also explore the common pitfalls in interpreting statistical arguments, especially those associated with big data. Collectively, this course will help you internalize a core set of practical and effective machine learning methods and concepts, and apply them to solve some real world problems. Learning Goals: After completing this course, you will be able to: 1. Design effective experiments and analyze the results 2. Use resampling methods to make clear and bulletproof statistical arguments without invoking esoteric notation 3. Explain and apply a core set of classification methods of increasing complexity (rules, trees, random forests), and associated optimization methods (gradient descent and variants) 4. Explain and apply a set of unsupervised learning concepts and methods 5. Describe the common idioms of large-scale graph analytics, including structural query, traversals and recursive queries, PageRank, and community detection
    Show or hide details about course Practical Predictive Analytics: Models and Methods
  3. COURSE 3

    Communicating Data Science Results

    Upcoming session: Mar 13 — Apr 10.
    Subtitles
    English

    About the Course

    Important note: The second assignment in this course covers the topic of Graph Analysis in the Cloud, in which you will use Elastic MapReduce and the Pig language to perform graph analysis over a moderately large dataset, about 600GB. In order to complete this assignment, you will need to make use of Amazon Web Services (AWS). Amazon has generously offered to provide up to $50 in free AWS credit to each learner in this course to allow you to complete the assignment. Further details regarding the process of receiving this credit are available in the welcome message for the course, as well as in the assignment itself. Please note that Amazon, University of Washington, and Coursera cannot reimburse you for any charges if you exhaust your credit. While we believe that this assignment contributes an excellent learning experience in this course, we understand that some learners may be unable or unwilling to use AWS. We are unable to issue Course Certificates for learners who do not complete the assignment that requires use of AWS. As such, you should not pay for a Course Certificate in Communicating Data Results if you are unable or unwilling to use AWS, as you will not be able to successfully complete the course without doing so. Making predictions is not enough! Effective data scientists know how to explain and interpret their results, and communicate findings accurately to stakeholders to inform business decisions. Visualization is the field of research in computer science that studies effective communication of quantitative results by linking perception, cognition, and algorithms to exploit the enormous bandwidth of the human visual cortex. In this course you will learn to recognize, design, and use effective visualizations. Just because you can make a prediction and convince others to act on it doesn’t mean you should. In this course you will explore the ethical considerations around big data and how these considerations are beginning to influence policy and practice. You will learn the foundational limitations of using technology to protect privacy and the codes of conduct emerging to guide the behavior of data scientists. You will also learn the importance of reproducibility in data science and how the commercial cloud can help support reproducible research even for experiments involving massive datasets, complex computational infrastructures, or both. Learning Goals: After completing this course, you will be able to: 1. Design and critique visualizations 2. Explain the state-of-the-art in privacy, ethics, governance around big data and data science 3. Use cloud computing to analyze large datasets in a reproducible way.
    Show or hide details about course Communicating Data Science Results
  4. COURSE 4

    Data Science at Scale - Capstone Project

    Upcoming session: May 8 — Jun 26.
    Commitment
    6 weeks of study, 3-4 hours/week
    Subtitles
    English

    About the Capstone Project

    In the capstone, students will engage on a real world project requiring them to apply skills from the entire data science pipeline: preparing, organizing, and transforming data, constructing a model, and evaluating results. Through a collaboration with Coursolve, each Capstone project is associated with partner stakeholders who have a vested interest in your results and are eager to deploy them in practice. These projects will not be straightforward and the outcome is not prescribed -- you will need to tolerate ambiguity and negative results! But we believe the experience will be rewarding and will better prepare you for data science projects in practice.
    Show or hide details about course Data Science at Scale - Capstone Project

Creators

  • University of Washington

    The University of Washington is a national and international leader in the core fields that are driving data science: computer science, statistics, human-centered design, and applied math.

    Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

  • Bill Howe

    Bill Howe

    Director of Research

 

Enroll


Class Central’s Top 100 MOOCs of All Time (2019 edition)
100+ Free Online Courses to Learn about the UN’s Sustainable Development Goals
200 Best Free Coursera Courses in 2019
Пропозиції для молоді від UN
Trading Strategies in Emerging Markets Specialization
450 Free Online Programming & Computer Science Courses You Can Start in August
Підготовка та впровадження проектів розвитку громад
Рада Європи: Доступ до публічної інформації: від А до Я
New MicroMasters® Programs: Gain In-Demand Knowledge to Advance Your Career
Data Science at Scale Specialization


Все статьи раздела Образование

Новини

17:12 - Оперативна інформація МОЗ про поширення коронавірусної інфекції COVID-19
15:06 - Ситуація у контрольних пунктах в’їзду-виїзду в районі проведення операції Об’єднаних сил
13:24 - Российские владельцы “Альфа-Банка” выпустил облигации на 50 млн долларов под 9% годовых
12:30 - Приднестровский олигарх имеет украинское гражданство и виллы в Украине
12:30 - Минобороны купит ракетных комплексов на 2 млрд гривен
11:36 - НБУ выкупил на межбанке 125 млн долларов
11:36 - Зерновой терминал Cargill заявляет о давлении Налоговой
10:42 - Средневековье или провокация врагов Украины: кто организовал “Уханьский позор”
10:42 - Полиция уже расследует смерть бывшего главы “Интера” как умышленное убийство
10:42 - На следующей неделе запустят “Дія.Бізнес”
09:48 - В Харьковской области жители протестуют против добычи сланцевого газа
09:48 - Средняя зарплата в Киеве — выше общеукраинской в 1,5 раза
08:54 - Крупнейший украинский производитель соков займется техническим спиртом
08:54 - Право на экспорт аграрной продукции в ЕС получили 333 украинских предприятия
08:54 - Разведка боем удалась. Когда Путин захочет прорвать фронт под Мариуполем
08:00 - Эффект Гончарука. Почему рейтинг Зе-власти просел вдвое
20:12 - У китаянки, яка прямувала потягом Київ-Москва, нового коронавірусу не виявили, — ЦГЗ
18:06 - Працюємо над лібералізацією автомобільних перевезень між Україною та Угорщиною у найближчий перспективі, - Владислав Криклій
16:42 - Треба відходити від паперових бланків та працювати над переходом на онлайн дозволи, - Владислав Криклій
16:42 - Працюємо над лібералізацією автомобільних перевезень між Україною та Угорщиною у найближчий перспективі, - Владислав Криклій
16:00 - Треба відходити від паперових бланків та працювати над переходом на онлайн дозволи, - Владислав Криклій
16:00 - Епідеміологи провели забір зразків у людей, які перебувають в обсервації, для тесту на наявність COVID-19, - Дмитро Коваль
14:00 - Списавшая 104 млн гривен со счетов “Укртрансгаза” фирма скупила кредиты заводов Константина Жеваго
13:54 - Владислав Криклій: Литовська Республіка є стратегічно важливим партнером України для оновлення національної інфраструктури та реалізації транзитного потенціалу
13:06 - “Укроборонпром” увеличил экспорт оружия на 19%
13:06 - В 2019 году в Украине открылись 697 супермаркетов
12:12 - Арбитраж ООН подтвердил право рассматривать иск Украины против России о нарушении Конвенции по морскому праву
12:12 - Ринат Ахметов решил попиариться на национальном позоре в Новых Санжарах
11:48 - Ситуація в контрольних пунктах в’їзду-виїзду в районі проведення операції Об’єднаних сил
11:18 - В доме экс-главы МИДа застрелился бывший председатель правления “Интера” при Валерии Хорошковском


Більше новин

ВалютаКурс
Австралійський долар16.1414
Канадський долар18.453
Юань Женьмiньбi3.4776
Куна3.5456
Чеська крона1.0538
Данська крона3.5357
Гонконгівський долар3.1399
Форинт0.078365
Індійська рупія0.3414
Рупія0.0017797
Новий ізраїльський шекель7.1412
Єна0.21837
Теньге0.064903
Вона0.020224
Мексиканське песо1.2876
Молдовський лей1.3759
Новозеландський долар15.4384
Норвезька крона2.6183
Російський рубль0.37979
Саудівський рiял6.5184
Сінгапурський долар17.4602
Ренд1.6214
Шведська крона2.4996
Швейцарський франк24.8962
Єгипетський фунт1.5718
Фунт стерлінгів31.6153
Долар США24.453
Бiлоруський рубль11.0432
Азербайджанський манат14.4011
Румунський лей5.4975
Турецька ліра3.9945
СПЗ (спеціальні права запозичення)33.3124
Болгарський лев13.5122
Євро26.4129
Злотий6.168
Алжирський динар0.20865
Така0.29481
Вірменський драм0.052297
Іранський ріал0.00059594
Іракський динар0.021033
Сом0.35833
Ліванський фунт0.016603
Лівійський динар17.8297
Малайзійський ринггіт6.1079
Марокканський дирхам2.6026
Філіппінське песо0.49181
Донг0.0010798
Бат0.80289
Дирхам ОАЕ6.8144
Туніський динар8.8804
Узбецький сум0.0026172
Новий тайванський долар0.82769
Туркменський новий манат7.1513
Ганське седі4.5488
Сербський динар0.23519
Сомоні2.5824
Ларі8.6712
Бразильський реал5.8635
Золото40161.85
Срiбло454.02
Платина24108.7
Паладiй66210.17

Курси валют, встановлені НБУ на: 24.02.2020

ТікерOpenMaxMinCloseVolume
KVBZ232323232300.00
TATM11.111.111.111.176590.00

Дані за 21.02.2020